本區搜索:
Yahoo!字典
打印

Max. and min. value

[隱藏]

Max. and min. value

從同學口中得知以下題目,但小弟實在無能為力,束手無策,希望有高手可以幫手解答。
Question:
Find the maximum and minimum values of y.


P.S. post錯區tim,麻煩版主幫手,唔該!

[ 本帖最後由 KT6491 於 2010-9-20 06:19 PM 編輯 ]
附件: 您所在的用戶組無法下載或查看附件
   

TOP

-1 ≦sinx ≦1
-2 ≦ sinx - 1 ≦ 0

-1 ≦cosx ≦1
1≦cosx + 2≦3

Max. value = 上max / 下min = 0 / 1 = 0
Min. value = 上min / 下max = -2/3
【DSE Maths】中大教育文憑 × 數學系畢業◆助你奪*升Lv~
首次以課題分班,10月開班招生,快d黎睇下~

導師簡介:按此進入

TOP

引用:
原帖由 傑Simon 於 2010-9-20 07:20 PM 發表 -1 ≦sinx ≦1-2 ≦ sinx - 1 ≦ 0-1 ≦cosx ≦11≦cosx + 2≦3Max. value = 上max / 下min = 0 / 1 = 0Min. value = 上min / 下max = -2/3


TOP

回復 3# notsang1 的帖子

做咩?
【DSE Maths】中大教育文憑 × 數學系畢業◆助你奪*升Lv~
首次以課題分班,10月開班招生,快d黎睇下~

導師簡介:按此進入

TOP

你想講答案係 -2 ?
【DSE Maths】中大教育文憑 × 數學系畢業◆助你奪*升Lv~
首次以課題分班,10月開班招生,快d黎睇下~

導師簡介:按此進入

TOP

引用:
原帖由 傑Simon 於 2010-9-20 07:20 PM 發表
-1 ≦sinx ≦1
-2 ≦ sinx - 1 ≦ 0

-1 ≦cosx ≦1
1≦cosx + 2≦3

Max. value = 上max / 下min = 0 / 1 = 0
Min. value = 上min / 下max = -2/3
If the question is y=s/t, where s,t are non-negative and independent and you know the ranges for s,t respectively, then your method will work.
However, in this case, s=sin x-1 and t=cos x+2. They are not independent (as (s+1)^2+(t-2)^2=1) and s≦0, you can't get max/min values this way.

[ 本帖最後由 桃子 於 2014-10-8 11:35 PM 編輯 ]

TOP

引用:
原帖由 KT6491 於 2010-9-20 06:04 PM 發表
從同學口中得知以下題目,但小弟實在無能為力,束手無策,希望有高手可以幫手解答。
Question:
Find the maximum and minimum values of y.
29171

P.S. post錯區tim,麻煩版主幫手,唔該!
The way I find most straight-forward is certainly by differentiation.

However, if you haven't learnt it yet, then there is probably a way to get the answer by playing around with trigonometric identities.

[ 本帖最後由 桃子 於 2010-9-21 11:23 AM 編輯 ]

TOP

回復 6# 桃子 的帖子

actually, i think the only problem for this question is to find the minimum value
For maximum value, this method should be ok, right?
【DSE Maths】中大教育文憑 × 數學系畢業◆助你奪*升Lv~
首次以課題分班,10月開班招生,快d黎睇下~

導師簡介:按此進入

TOP

dy/dx = (cos(x))/(cos(x)+2)+((sin(x)-1) sin(x))/(cos(x)+2)^2
dy/dx=0......

max{y} = 0  at  x = pi/2


min{y} = -4/3  at  x = 2 pi-2 tan^(-1)(3)

Using Calculus Approach


Or Another Way: Applying Method of T.T. (Be confident,u can do this )

TOP

引用:
原帖由 傑Simon 於 2010-9-21 04:01 PM 發表
For maximum value, this method should be ok, right?
In general, "max. value = 上max / 下min" will not work if top and bottom are not independent.
Even if top and bottom are independent, you need to take care about the sign.


However, there is an alternative way to argue that the max. is 0 in this particular case.

The numerator is non-positive while the denominator is positive. Hence, we can conclude that the fraction is non-positive. Furthermore, we see that the value 0 can be attained (when sin x=1). Therefore, 0 is the maximum value.

TOP

For max. value, the upper is greatest while the lower part is smallest.
For min. value, the upper is smallest while the lower part is greatest.
This is the principle.

TOP

回復 11# tangw 的帖子

好廢姐…唔好呃帖…
Btw, could you ask ur classmate how we canfind the ans?

TOP

引用:
原帖由 tangw 於 2010-9-26 05:50 PM 發表
For max. value, the upper is greatest while the lower part is smallest.
For min. value, the upper is smallest while the lower part is greatest.
This is the principle.
This is generally FALSE!!! (unless both numerator and denominator are positive)

TOP

回復 14# peterkong123 的帖子

What is meant by "refer to the text book"?
Do you mean the solution of this kinda question?
Do you know how to do this?

TOP

重要聲明:小卒資訊論壇 是一個公開的學術交流及分享平台。 論壇內所有檔案及內容 都只可作學術交流之用,絕不能用商業用途。 所有會員均須對自己所發表的言論而引起的法律責任負責(包括上傳檔案或連結), 本壇並不擔保該等資料之準確性及可靠性,且概不會就因有關資料之任何不確或遺漏而引致之任何損失或 損害承擔任何責任(不論是否與侵權行為、訂立契約或其他方面有關 ) 。