本區搜索:
Yahoo!字典
打印

[問題] a math questions

[隱藏]

a math questions

(1) (10pts) Let V and W be two (real) vector spaces and T : V →
W is a linear transformation. Suppose Z is a subspace of W,
namely Z ≤ W. Let T^−1
(Z) be the set of all vectors x in V
such that T(x) lies in Z. Namely
T^−1 (Z) = {x in V | T(x) lies in Z.}.
Argue that T^−1(Z) is also a subspace of V .
(2) Again let T : V → W be a linear transformation between two
real vector spaces V, W.
• (5pts) Suppose {v1, · · · , vp} is a linearly dependent set of
vectors in V , then the set of their images
{T(v1), · · · , T(vp)}
is also linearly dependent.
• (5pts) Suppose T is one-to-one (namely injective) and {v1, · · · , vp}
is a set of vectors in V such that
{T(v1), · · · , T(vp)}
is linearly independent (set of vectors in W), then{v1, · · · , vp}
is also linearly independent.
   

TOP

重要聲明:小卒資訊論壇 是一個公開的學術交流及分享平台。 論壇內所有檔案及內容 都只可作學術交流之用,絕不能用商業用途。 所有會員均須對自己所發表的言論而引起的法律責任負責(包括上傳檔案或連結), 本壇並不擔保該等資料之準確性及可靠性,且概不會就因有關資料之任何不確或遺漏而引致之任何損失或 損害承擔任何責任(不論是否與侵權行為、訂立契約或其他方面有關 ) 。