本區搜索:
Yahoo!字典
打印

[Core] 概率問題

[隱藏]

概率問題

A fair coin is tossed 10 times.find the probability of getting 6 heads
   

TOP

ans = 10C6 X 0.5^6 X 0.5 ^4
10C6 --> 10次堶惆鉹6次中head
第一個0.5 --> prob. of head
第二個0.5 --> prob. of tail ( not head)
2014 dse result:
Math (core) 5**
Math (M1) 5*
BAFS (ACC) 5*
Phy 5*

TOP

引用:
原帖由 kelvintutor212 於 2016-3-7 04:29 AM 發表
ans = 10C6 X 0.5^6 X 0.5 ^4
10C6 --> 10次堶惆鉹6次中head
第一個0.5 --> prob. of head
第二個0.5 --> prob. of tail ( not head)
10C6/0.5^10
呢個方法有咩分別

TOP

引用:
原帖由 qwez123 於 2016-3-7 07:56 PM 發表

10C6/0.5^10
呢個方法有咩分別
答案上無分別,但concept上唔同 如果今次唔係銀仔,係骰仔,咁就唔work了

TOP

引用:
原帖由 LAnews 於 2016-3-7 10:28 PM 發表

答案上無分別,但concept上唔同 如果今次唔係銀仔,係骰仔,咁就唔work了
可唔可以講解下

TOP

回覆 5# qwez123 的帖子

我試解吓,希望同學你明啦。


設p為擲公(H)概率,q為字(T)的概率,已知
﹒ ﹒ ﹒ P(H) = p, P(T) = q;
﹒ ﹒ ﹒ p + q = 1
注意p不一定等於q,因錢幣是公的一面較重。


10次中6次是公,如得HHHHHHTTTT,其概率為
﹒ ﹒ ﹒ P(HHHHHHTTTT) = ppppppqqqq
﹒ ﹒ ﹒ = (p^6)(q^4)
其它投擲結果如HHHHHTTTTH,其概率仍為
﹒ ﹒ ﹒ P(HHHHHTTTTH) = pppppqqqqp
﹒ ﹒ ﹒ = (p^6)(q^4)
世至乎擲出HHHHTTTTHH,其概率依然為
﹒ ﹒ ﹒ P(HHHHTTTTHH) = ppppqqqqpp
﹒ ﹒ ﹒ = (p^6)(q^4)
見到6次公的概率不因擲出公的次序而變。

這便利運算,因6H4T有10!/(6!4!)種排法
﹒ ﹒ ﹒ P(6H4T) = P(HHHHHHTTTT) + P(HHHHHTTTH) + ...
﹒ ﹒ ﹒ = (p^6)(q^4) + (p^6)(q^4) + (p^6)(q^4) + ...
﹒ ﹒ ﹒ = (total no. of outcomes)(p^6)(q^4)
﹒ ﹒ ﹒ = [10!/(6!4!)](p^6)(q^4)
﹒ ﹒ ﹒ = C(10, 6)(p^6)(q^4) ...... (*)
(*)為二項式概率(Binomial Prob)的通常式。


若錢幣公平(Fair),p = q = 0.5,計得
﹒ ﹒ ﹒ P(6H4T) = C(10, 6)(0.5^6)(0.5^4)
﹒ ﹒ ﹒ = C(10, 6)(0.5^10) §
見到同學的計法是其中一個特殊性況。


擲骰同理。設擲1點的概率p,非1點的概率q,那麼
﹒ ﹒ ﹒ p = 1/6, q = 1 - p = 5/6
再用(*)計得擲6個1點的概率為
﹒ ﹒ ﹒ P(1 appear 6 times) = C(10, 6)[(1/6)^6][(5/6)^4]
﹒ ﹒ ﹒ = C(10, 6)(5^4)/(6^10) §

[ 本帖最後由 peterkcc2015 於 2016-3-9 01:53 PM 編輯 ]

TOP

引用:
原帖由 peterkcc2015 於 2016-3-8 04:07 PM 發表
我試解鵅A希望同學你明啦。


設p為擲公(H)概率,q為字(T)的概率,已知
﹒ ﹒ ﹒ P(H) = p, P(T) = q;
﹒ ﹒ ﹒ p + q = 1
注意p不一定等於q,因錢幣是公的一面較重。


10次中6次是公,如得HHHHHHT ...
唔該曬

TOP

重要聲明:小卒資訊論壇 是一個公開的學術交流及分享平台。 論壇內所有檔案及內容 都只可作學術交流之用,絕不能用商業用途。 所有會員均須對自己所發表的言論而引起的法律責任負責(包括上傳檔案或連結), 本壇並不擔保該等資料之準確性及可靠性,且概不會就因有關資料之任何不確或遺漏而引致之任何損失或 損害承擔任何責任(不論是否與侵權行為、訂立契約或其他方面有關 ) 。